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The physics underlying the non-zonal transition [M. J. Pueschel et al., Phys. Rev. Lett. 110,

155005 (2013)] are explored in detail, and various studies are presented which support the theory

that critically weakened zonal flows are indeed responsible for the failure of ion-temperature-

gradient-driven turbulence at high plasma b to saturate at typical transport values. Regarding

flux-surface-breaking magnetic fluctuations and their impact on zonal flows, numerical approaches

to obtaining zonal flow residuals are elaborated on, and simulation results are shown to agree

with analytical predictions, corroborating the interpretation that flux-surface-breaking magnetic

fluctuations cause the transition. Consistently, the zonal-flows-related energetics of the turbulence

are found to change fundamentally when exceeding the threshold. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4823717]

I. INTRODUCTION

Operational limits regarding the maximum plasma pres-

sure achievable in fusion devices are an important field of

study, both in light of plasma performance and the underly-

ing physics. When attempting to heat an experiment beyond

such thresholds, a large increase in the heat and particle

transport results. One potential such limit is the non-zonal

transition (NZT)1; while other pressure limits are associated

with linear instabilities—of either fluid or kinetic nature—

being excited at their respective thresholds, the NZT is a

more complex, fundamentally nonlinear phenomenon. In

addition to providing an encompassing explanation for the

long-standing question why gyrokinetic codes see a sudden

onset of extreme transport values well below the ballooning

threshold for certain parameters, the concept of the NZT

may also be applicable to actual fusion experiments.

The present paper aims to provide detailed background

information on the results reported in Ref. 1, as well as shed

more light on the physics underlying the NZT, in the process

examining a variety of different physical effects. For conven-

ience, the central properties of the NZT are summarized next.

Turbulent fluctuations of the magnetic potential Ak can

be split into resonant and non-resonant components, meaning

the extended ballooning structure2 is symmetric or anti-

symmetric, respectively (see Ref. 3 for more details).

Typically, non-resonant potentials do not break magnetic

flux surfaces since the radial displacement Dr1=2 of a given

field line—as it moves poloidally from the inboard to the

outboard midplane—is canceled on its onward path, where

the second half poloidal turn leads to a displacement

Dr2=2 � �Dr1=2. If, however, Dr1=2 exceeds the radial corre-

lation length kBxx of the radial magnetic field Bx ¼ kyAk,
with the binormal wavenumber ky normalized to the ion

sound gyroradius qs, the second half turn starts to decorrelate

from the first, and the field line will not return to its original

radial position. As Dr1=2 scales with the normalized electron

pressure b, this results in the non-resonant component of Ak
becoming flux-surface-breaking at a critical bNZT

crit and in a

sudden increase of the magnetic stochasticity.4 Zonal flows,

in turn, are susceptible to such stochasticity as broken flux

surfaces lead to radial currents, shorting out radial structures

of the electrostatic potential. Therefore, ion temperature gra-

dient (ITG) modes, which rely on zonal flows for saturation,

can no longer saturate at typical levels of the heat flux and

instead will continue to grow after some transient saturation

phase. This phenomenon is sometimes referred to as the

high-b runaway, but based on the findings of Ref. 1, non-
zonal transition is considered to be a more suitable term.

It is to be stressed that technically, the NZT could occur

without the decorrelation mechanism contributing to

enhanced stochasticity—this could be the case if the even-

parity component of Ak alone would be sufficiently strong to

suppress the zonal flow. As will be discussed in the present

paper, however, an NZT based solely on even-parity fluctua-

tion suppression of zonal flows would effectively deplete the

source of the even-parity Ak, as the zonal flows moderate the

corresponding energy transfer. Therefore, the system would

return to the original state until the even-parity fluctuations

have been replenished. Extreme heat flux levels are not

expected to occur in this case.

In the following, a number of investigations performed

in the context of the NZT are presented: After a few words

on the gyrokinetic framework and the GENE code, which was

used throughout this work, Sec. II provides details on the

elaborate convergence studies conducted to ensure that the

observed simulation features are not of an unphysical nature.

Data from various codes are shown, demonstrating agree-

ment regarding bNZT
crit . A study of zonal flows follows in Sec.

III, where flux-surface-breaking magnetic fluctuations are

investigated in their impact on the zonal flow residual and

geodesic acoustic modes (GAMs). This is done with
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simplified models mimicking different degrees of realism of

the fully turbulent scenario. Next, the field line integration

routine used by the GENE DIAGNOSTICS TOOL is described and

then applied to turbulence data in order to extract Dr1=2.

Before a summary of the findings of this paper, Sec. V fol-

lows which explores the nonlinear transfer of energy, with

transfer occurring mainly from the unstable linear ITG mode

to stable modes, catalyzed by the zonal flow—this property,

however, is found to change as the NZT threshold is crossed.

Two additional studies, related to secondary (zonal-flow-

related) and tertiary instability growth, will be published sep-

arately—here, it suffices to say that the respective results are

consistent with the interpretations provided below and in

Ref. 1.

II. NUMERICAL FRAMEWORK AND CONVERGENCE

Gyrokinetic theory (see Ref. 5 and references therein) is

well-established as an efficient and encompassing tool for

the study of core microturbulence. The numerical implemen-

tation used here is the GENE code,6,7 an extensively bench-

marked (see, e.g., Refs. 8–11) Vlasov solver which, for the

present investigations, was used in its radially local mode of

operation. The set of physical parameters employed through-

out most of this work is given in Ref. 12 and corresponds to

the Cyclone Base Case (CBC).13

When focusing on new effects such as the NZT, ensur-

ing numerical convergence is an essential task. As a baseline

resolution, ðNx;Nky;Nz;Nvk;NlÞ ¼ ð192; 24; 24; 48; 8Þ was

used which results in well-converged simulations (where

convergence is measured in different transport channels,

including the electron magnetic channel) for the parameters

in Ref. 12. These resolutions correspond to the radial coordi-

nate x, the binormal coordinate y, the coordinate z parallel to

the background magnetic field, the parallel velocity vk, and

the magnetic moment l, respectively. For efficiency, some

of the simulations in this work use a slightly reduced set of

resolutions: ð128; 16; 16; 32; 8Þ. These values yield qualita-

tively identical results with only very moderate quantitative

differences, as corroborated by the fact that they mimic the

resolutions used in Ref. 14, where simulation results for the

same physical parameters are reported.

Just inside the NZT regime, i.e., at b � bNZT
crit ¼ 0:9%,

numerical convergence was ensured thoroughly: all resolu-

tions were doubled, quadrupled, or sometimes even increased

six-fold, as were the box sizes Lx; Ly; Lvk, and Ll (at constant

respective grid spacing), directly corresponding to the above

coordinates—Lz=ðq0R0Þ is always set to 2p. Here, q0 is the

safety factor and R0 the major radius. The time step was

reduced severely, and different (explicit) time stepping

schemes were tested. A number of finite differencing schemes

(including a conservative Arakawa scheme15) and numerical

hyperdiffusion operators16 were used, the latter in the parallel,

parallel velocity, and radial direction, with the corresponding

coefficients being varied over at least an order of magnitude.

Additionally, simulations were performed both with and with-

out parallel magnetic fluctuations Bk (in the following, Bk
will be ignored). None of the above modifications resulted in

the simulations saturating ad infinitum at regular heat fluxes

or significantly affecting transient saturation transport levels

or bNZT
crit . It should be noted, however, that under-resolving the

y direction only up to a maximum ky � 0:4, i.e., with only

half the minimum grid spacing, does indeed result in the tran-

sition shifting to higher b. This is readily explained by the

fact that under-resolving y reduces the magnetic field stochas-

ticity level Bx which is directly responsible for the threshold

b value.

These findings are in line with those of other codes.

Unfortunately, there exists little published material, as there

has in the past been some uncertainty as to whether the NZT

threshold may be a numerical artifact. In Ref. 17, a few cases

are described. Reference 18 presents data from the gyroki-

netic codes GYRO
19 and GKW20 (the data of the former taken

from Ref. 14), which is shown along with GENE curves in

Fig. 1. The plotted data illustrates that the aforementioned

codes agree well both regarding the saturated transport

values at b < bNZT
crit and the NZT threshold b itself, further

supporting the statement that the NZT is physical.

In the corresponding figure in Ref. 18, there are different

GENE data points included in the high-b range which had

been taken from Ref. 12. The authors of this latter publica-

tion had assumed at the time that the NZT is numerical in na-

ture and had experimented with various initial conditions to

avoid saturation transience—this was briefly commented on

in Ref. 21 but warrants further explanation here. Initializing

a simulation with b > bNZT
crit using the distribution function

data from the nonlinear, saturated state at a b just below

bNZT
crit results in saturation at the higher b for long phases, of-

ten many hundred time units R0=cs, with the ion sound speed

cs. The data shown in Ref. 12 illustrates that for these simu-

lations, the electron magnetic heat flux—and thus the mag-

netic fluctuation level—is lower than one would expect

when extrapolating from below bNZT
crit . Therefore, it appears

that the time scale for the turbulence to create stronger fluc-

tuations and for those fluctuations to deplete the zonal flow

FIG. 1. Results from gyrokinetic codes GENE (black crosses), GYRO (red dia-

monds), and GKW (blue squares) for b � bNZT
crit : plotted is the ion electro-

static heat diffusivity. The near-vertical lines at the threshold illustrate a

transition to very large transport values; for all b scans shown, this occurs

above b ¼ 0:8% but below b ¼ 0:85%. Good quantitative agreement is

found both for the pre-NZT transport and the NZT threshold. Dotted lines

(GENE and GYRO) indicate sensitivity tests with slightly different numerical

settings.
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sufficiently to create an NZT can be relatively long. As a

result, it is even possible to use standard initial conditions

and perform simulations directly at even higher b, now very

close to the kinetic ballooning mode (KBM) threshold bKBM
crit

(where the KBM becomes linearly unstable), and obtain sat-

uration for very long times—the linear ITG mode is suffi-

ciently weak at these b values that the moment at which the

NZT starts is shifted to much later times. This, in turn, dem-

onstrates that there is indeed physical meaning to the trans-

port values reported in Ref. 12, in particular close to the

KBM threshold.

Supportive of these findings is the fact that for CBC pa-

rameters, the NZT is in some sense marginal. More specifi-

cally, there are two facets of these parameters to support that

statement: First, bNZT
crit � 0:9% is only a little smaller than

bKBM
crit � 1:3%, meaning that for slightly lower background

gradients, no transition is observed. Second, near the bal-

looning threshold, the (now subdominant) linear ITG mode

is almost stabilized by finite b, and a trapped electron mode

(TEM) is the dominant instability; consequently, the NZT

time scale changes significantly.

Having demonstrated that the NZT is a very robust phe-

nomenon with respect to numerical properties of the simula-

tions, the focus is now shifted to physical aspects of ITG

turbulence near the NZT threshold. First, the impact of mag-

netic fluctuations on zonal flows is studied.

III. ZONAL FLOWS AND MAGNETIC FLUCTUATIONS

In some brevity, Ref. 1 sketches an extension to the pre-

vailing theory on zonal flow residuals,22,23 where flux-

surface-breaking radial magnetic fluctuations are causing a

reduction of the amplitude of the residual. The full details of

this new theory—along with a discussion of the underlying

physics—will be presented in a separate paper, while here,

additional details and background information with regard to

the corresponding numerical setup are given. Note that the

present work focuses only on the erosion of zonal flows

whereas a study of the finite-b properties of their nonlinear

drive has been relegated to a separate publication (Ref.

24)—it suffices to stress here that no impact of (moderately)

changed zonal flow drive on the NZT is to be expected.

The analytical prediction for the behavior of the electro-

static potential U to which the numerical studies are com-

pared reads

UðtÞ � UR � Sa2 t2: (1)

Here,

Sa2 ¼
2

ð
d2v?F0ðv?ÞŜ

U
e a2

ðn0e=Ti0Þk2
xq

2
sR

; (2)

with

UR ¼
Uðt ¼ 0Þ

1þ 1:6q2
0=�

1=2
t

� Uðt ¼ 0Þ
R (3)

and the electron source Ŝ
U
e . Furthermore, a ¼ AkkxkyvTh;e=

B0, with the electron thermal velocity vTh,e. Additional defi-

nitions are as follows: e is the elementary charge, F0 is the

background Maxwellian, and B0 the background magnetic

field; Tj0 denotes the background temperature of species j,
and t is time; Lastly, �t denotes the inverse aspect ratio of the

flux surface under investigation. For Eq. (1) to be valid, one

requires k2
xq

2
sR � 1 and a2t2 � 1.

A few comments are in order regarding how these find-

ings apply to simulations. First, UR � UðtÞ ¼ Sa2 t2 / a2t2 in

the limit of (moderately) short times. Second, the electron

source Ŝ
U
e in Eq. (2) is directly related to the electron density

at the (unmodified) residual which in turn is related to UR. The

a2t2 behavior of Eq. (1) agrees with the simulation results pre-

sented next. Third, using a constant-in-time Ak is necessary to

avoid direct analytical treatment of nonlinear effects while

constituting a significant simplification of the turbulent case.

It is straightforward to implement such a setup numeri-

cally, by replacing the self-consistent computation of Ak by

some function of z and possibly t. Numerical studies of zonal

flow decay and residuals typically have a single finite jkxj,
with only ky ¼ 0 (the zonal mode) being computed in a lin-

ear simulation. As the present objective is to analyze the

impact of Bx fluctuations, nonlinear coupling to at least one

finite-ky mode is necessary. When Ak is kept fixed in time,

the magnetic (Ak) part of the nonlinearity reduces to a quasi-

linear term, and only at large times t do self-consistent elec-

trostatic coupling effects play a role—this temporal region is

therefore excluded from all results shown here.

The way the initial condition for such runs is chosen can

have a strong impact on how challenging the corresponding

simulations are going to be numerically. Zonal flow studies

of the type presented here are typically initializing a

ðkx; kyÞ ¼ ð1; 0Þ mode in U which is constant in the parallel

direction.22,23 Here, k ¼ 1 is meant to symbolize some finite

value rather than specifically an inverse ion sound gyrora-

dius. One thus obtains the full physics of the GAM damping,

resulting in the usual residual UR being eroded over time by

the imposed Bx. As mentioned above, for Bx, a resonant, con-

stant-in-time Ak is inserted at ðkx; kyÞ ¼ ð0; 1Þ—and set to

zero for any other ðkx; kyÞ—which acts on the zonal flow

through the Vlasov nonlinearity.

While this setup is very useful to demonstrate that both

the GAM frequency and the GAM damping rate are

unchanged by Bx (see Fig. 2), it is also clear from this plot

that a quantitative analysis of the impact of Bx on the residual

is made rather difficult by the presence of the GAMs, even

ignoring the stringent resolution requirements in velocity

space stemming from the need to resolve these modes (for

the curves in this plot, Nvk ¼ 128 and Nl ¼ 32 were used,

along with Nz ¼ 24; doubling these values changes neither

the GAM frequency, the GAM damping, nor the zonal flow

damping with Bx). In the figure, larger Bx are shown to have

a stronger reducing effect on the residual. Two different

approaches are detailed below, both of which allow for a

more precise analysis of this property.

First, one may start a simulation with Ak ¼ 0, which

will eventually yield the unmodified, constant-in-time UR;

by applying a moderate collision frequency �c and/or

102301-3 Pueschel et al. Phys. Plasmas 20, 102301 (2013)



hyperdiffusion Dv in vk (but no Dz),
16 the fine structure in the

ion velocity space (see Fig. 3) introduced by the GAMs can

be smoothed out more quickly, while introducing only a

slow, linear-in-time decay of the residual. At a time when

the GAM oscillations have disappeared but UR is still rea-

sonably conserved, �c and Dv are reduced to zero; subse-

quently, Bx is switched on at some finite value. Now, the

magnetic-fluctuation-induced effect on the residual can be

seen much more clearly, see the red curve labeled IC1 in

Fig. 4: the quadratic dependence on t as predicted by Eq. (1)

for moderate times t is recovered.

However, this approach does not alleviate the constrain-

ing nature of the resolution requirements; and remnants of

velocity space fine structure can make it difficult to obtain

smooth curves such as the one labeled IC1 in Fig. 4.

Therefore, a different setup—corresponding to the label IC2

in the same figure—is described which allows for much

more efficient studies of parameter dependencies and of the

properties and convergence of the Bx effect. Moreover, with

IC2, clear results without remnant features from polluting

effects such as the GAMs or collisions/hyperdiffusion can be

obtained.

While for zonal flow studies with adiabatic electrons,

there is no difference between initializing the ðkx; kyÞ
¼ ð1; 0Þ mode in ni or in U, this is no longer the case for ki-

netic electrons. Initializing n identically for both ions and

electrons (IC2), rather than the electrostatic potential (IC1),

now results in UðtÞ oscillating in a GAM-like manner and

then approaching a residual which is no longer described

well by the theoretical prediction for UR=Uðt ¼ 0Þ. In partic-

ular, the residual now lies above Uðt ¼ 0Þ rather than signifi-

cantly below it for CBC parameters—hereafter, UR in the

context of IC2 is meant to refer to the actual residual in this

case rather than the theoretical prediction in Eq. (3).

Moreover, while the electrons in IC2 have a very similar dis-

tribution compared with the post-GAM residual state of IC1

for large times t, the ions are at that point close to

Maxwellian (see Fig. 5).

The new setup IC2 results in the simulations becoming

significantly less expensive in terms of computation time, as

the GAM physics no longer require to be resolved. This

approach, however, is only useful if one is interested purely

in the dynamics of the system once the residual state is

reached (and the original state at t ¼ 0 is no longer relevant),

as is the case in the present work. Note that since the previ-

ously described analytical theory relies on electron motion

for the quadratic reduction of UðtÞ, the differences in the ion

distributions are expected not to matter, at least for moderate

times t.
The strategy employed here is to use the second initial

condition IC2 and do spot checks to ensure that the results in

the phase where Bx is active—for t � tR—are equivalent to

FIG. 2. GAM oscillations and zonal flow damping for various, increasing

values of the resonant, artificially imposed Ak. Shown is the electrostatic

potential as a function of time, normalized (separately for each curve) to its

value at t ¼ 0. Stronger magnetic fluctuations result in faster decay of the re-

sidual, with the linear dependence predicted by Eq. (1) visible in the simula-

tion data. For Ak ¼ 0, the usual residual UR is retained.

FIG. 3. Ion distribution function jf j in velocity space (not the entire l do-

main is shown here), at the outboard midplane. The fine structure dominat-

ing the plot is a result of the GAM oscillations (see also Ref. 25), and the

need to resolve it can make simulations rather expensive. This snapshot was

taken from the simulation labeled Ak ¼ 0 in Fig. 2 at t ¼ 37:4R0=cs; for the

curve with the smallest finite Ak, the plot for jf j is visually indistinguishable

from the one shown here.

FIG. 4. Decay of the zonal flow residual due to resonant magnetic fluctua-

tions, for two different initial conditions labeled IC1 (red) and IC2 (black).

Here, the initial oscillatory phases were computed without Bx, and moderate

collisionality and/or vk hyperdiffusion were used during t < tR to reduce the

velocity space fine structure more quickly. A quadratic fit (dashed curves)

was obtained for IC2 which also applies to IC1 when rescaled appropriately.

Both curves start to deviate from the quadratic fit curves near t� tR
� 70R0=cs.

102301-4 Pueschel et al. Phys. Plasmas 20, 102301 (2013)



those obtained through the first initial condition. Fig. 4 illus-

trates that the results do indeed agree very well when taking

into account the different electron source. Similarly to the

zero-crossing time tU¼0 (Ref. 1) as a measure for the impact

of Bx, one may define a factor g, with Uðt� tRÞ=UR

¼ 1� gðt� tRÞ2. This corresponds to the form in Eq. (1),

with one important difference: the quadratic decay in Eq. (1)

is proportional to Ŝ
U
e � neðt ¼ 0Þ � neðt ¼ tRÞ, where here it

scales like Uðt ¼ 0Þ / UR. As both initial conditions use dif-

ferent ratios of the electron density ne to U, this ratio must be

taken into account when comparing results from IC1 and

IC2. In Fig. 4, the same parameters (including Bx) were used

for both curves, but they differ by a factor

FU
n ¼

UIC1=ne;IC1

UIC2=ne;IC2

" #
t¼tR

: (4)

To obtain the dashed fit curves in Fig. 4, the curve for IC2

was fitted with an inverse parabola, and the corresponding

gIC2 was then multiplied by FU
n ¼ 43:4 to obtain gIC1. The

latter, for moderately short times t, can be seen to constitute

a reasonably good fit (for moderately short times t� tR � 70)

to the data resulting from fully resolving the GAM phase.

Parameter scans based on IC2 reveal, in addition to the

aforementioned properties, that the corresponding simula-

tions are well-converged in all numerical parameters (with

respect to tU¼0 and thus g) at resolutions of ðNvk;NlÞ
¼ ð48; 8Þ and that the exact shape of Ak along the z coordi-

nate is irrelevant: only its average hAkiz influences tU¼0.

Furthermore, imposing By rather than Bx causes the decay to

vanish altogether while introducing complex fluctuating

behavior of UðtÞ without changing the statistical average in

time. All of these findings are in accordance with the theory

and its physical interpretation.

Reference 1 reports the damping strength due to Bx by

giving the parameter dependencies of the zero crossing of the

potential, yielding tU¼0 / q0�
�1=6
t k0

x Bx. The crucial dependen-

cies for kx and Bx (the same holds for q0) can be recovered

from Eq. (1) by setting UðtÞ ¼ 0. For the inverse aspect ratio,

the theory prediction is �
�1=4
t it is possible to recover this value

in more careful analyses of numerical studies, as will be dem-

onstrated in the aforementioned separate paper.

Quantitative comparisons between the analytical

approach and the simulations (for sufficiently short times)

yield agreement to within about 15%. Improving this number

would likely require a more involved treatment, making the

analytical calculations much more difficult or even impossi-

ble. The behavior of the damping with respect to the impor-

tant parameters Bx; q0, and Ti=Te is reproduced accurately,

however. More details will be given in the aforementioned

separate paper.

The significant disparity of magnitude between UIC1 and

ne;IC1 is responsible for the large value of FU
n ¼ 43:4.

Therefore, the following quantitative application to realistic

cases of turbulence will be based on IC2. Since the claims

made in this work regarding the NZT rely on zonal flow

decay to occur on time scales comparable with or faster than

other relevant time scales in the system, it is instructive to

compare tU¼0 with the spatially averaged turbulent correla-

tion time tcorr which is defined as the time at which the auto-

correlation function of the electrostatic potential

CUðtÞ ¼

X
t0
hUðt0ÞUðt0 þ tÞix;y;zX

t0
hUðt0Þ2ix;y;z

(5)

has decayed to e�1 ¼ 0:368. To this end, measurements are

taken at b ¼ 0:7% (covering the entire quasi-stationary state).

One obtains tcorr ¼ 5:9cs=R0 and a resonant Bx ¼ 0:026,

mainly stemming from the low-ky region. To estimate tU¼0,

one can directly compare with the (appropriately scaled) data

in Ref. 1, thus arriving at tU¼0 ¼ 3:2cs=R0—indeed a value

relatively close to but smaller than tcorr. Therefore, at this

point just below bNZT
crit , the resonant components of Bx already

play some role in the dynamics of the zonal flows—not sur-

prisingly, as the shearing rate is already subjected to major

modifications at that b.12 It is intuitive that with the sudden

addition of another very stochastic Bx component, the turbu-

lent system will react rather strongly.

FIG. 5. Ion distribution function jf j in velocity space for the standard initial

condition IC1 (top) and the alternate version IC2 (bottom) designed to obtain

cleaner results with less computational effort. Both plots represent snapshots

after the respective oscillating phase has died down, at the moment when Bx

is turned on. The difference does not influence zonal flow decay due to Bx;

however, the specific shape of the ion distribution does not enter into the an-

alytical calculation. The corresponding electron distributions are almost

identical qualitatively for both initial conditions.
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While the use of a time-independent Bx allows for com-

parisons with the analytical approach as well as convenient

isolation of the underlying physical effect, it is possible to

choose a slightly more realistic setup: The standard

Rosenbluth-Hinton scenario relies on a dynamics focused

solely on the ky ¼ 0 mode and is thus unable to create any

appreciable Bx self-consistently. To mock up a nonlinear cou-

pling between Bx and the distribution function, the magnetic

fluctuations are scaled with the magnitude of U, as illustrated

in Fig. 6, which shows simulations based on IC2. The

response of the zonal flow is to decay quasi-exponentially,

with the t2 dependence preserved for short times, the decay

occurring on a similar time scale as in the case with constant-

in-time Bx.

The attention of the reader is now turned to magnetic

field lines and how their decorrelation can provide amplified

flux-surface-breaking magnetic fluctuations whose impact on

zonal flows has been studied in this section.

IV. MAGNETIC FIELD LINE INTEGRATION

A. Numerical details

As part of the GENE DIAGNOSTICS TOOL,26 a routine is avail-

able to integrate field lines from the Ak grid data and produce

either Poincar�e plots or calculate magnetic diffusivities. Its

functionality and algorithmic properties are described below.

First, the initial positions of the field lines to be traced

are fixed; unless specified otherwise, the rectangular seed

position grid is centered in both the x and y direction about

the middle of the box, where the box ranges from �Lx=2 to

Lx=2 and from �Ly=2 to Ly=2, with the number of seed lines

in x and y being free parameters. Note that lines with the

same x but different y lie on the same (unperturbed) flux sur-

face. For most studies of turbulent field line behavior and

throughout this work, lines are all seeded equidistantly along

the line of y ¼ 0.

Next, the (Fourier space) input data for Ak is extended in

the parallel direction, using the parallel boundary condition

Akði; j;þpÞ ¼ ð�1ÞjNAkðiþ jN ; j;�pÞ; (6)

where i and j are the mode numbers corresponding to kx and

ky, respectively, and N ¼ 2pŝLx=Ly. Additionally, the mag-

netic potential is normalized to B0ðzÞ, which, in ŝ-a geome-

try,27 reads B0ðzÞ ¼ 1=ð1þ �t cos zÞ. The resulting data is

then interpolated linearly along the parallel coordinate, typi-

cally to at least 128 grid points. Note that this interpolation

is performed with the Ak data still in Fourier space in x and

y, which numerically preserves r 	 B ¼ 0. Next, kx and ky

are multiplied onto Ak to arrive at By and Bx, respectively.

With the magnetic fields thus interpolated parallelly, Fourier

transforms are applied to the perpendicular directions, and—

if necessary—Fourier interpolation is used to increase the

perpendicular real space resolutions.

The next step comprises the actual integration: starting at

the inboard (i.e., at parallel position z ¼ �p), all lines are

advanced in steps of Dz, and after every completed poloidal

turn, the positions are recorded, as are any applications of the

(periodic) radial boundary condition to allow for the correct

evaluation of the diffusivity. All steps follow this scheme:

The local Bx and By are evaluated at the field line position

through linear two-dimensional interpolation between perpen-

dicular grid cells, where they specify the displacement of the

field line per Dz according to

ðx; yÞ½zþ Dz
 ¼ ðx; yÞ½z
 þ
2pq0R0Bðx;yÞ

NzB0

: (7)

Rather than simply taking this to be the next parallel position,

only half a parallel step is taken, and the values for Bðx;yÞ
obtained at the half-way position are used to advance the field

lines from z to zþ Dz. This predictor-corrector method is

employed to reduce errors due to field line curvature.

Whenever a field line arrives at a simulation domain bound-

ary, it is mapped back into the local flux tube. This scheme is

fairly efficient, and Oð100Þ field lines can be traced at typical

resolutions for 100 poloidal turns per second.

The Poincar�e data can be visualized by drawing a single

point per recorded position at the outboard midplane (z ¼ 0),

where the points are colored by seed position. As a result,

flux surface intactness may be measured by a separation of

colors, whereas thoroughly mixed colors indicate efficient

flux surface destruction (see Fig. 7 for an example similar to

results presented in Ref. 28). Alternatively, Poincar�e histo-

grams may be plotted, counting the number of field lines per

x-y bin, which can offer clearer pictures for large numbers of

lines and/or poloidal turns.

To provide a quantitative measure of the field line

behavior, a diffusivity may be computed as follows. The

radial displacement of line l after one poloidal turn p is

Drðl; pÞ ¼ rðl; pÞ � rðl; 0Þ, leading to a definition very simi-

lar to the one in Ref. 4 of the field line diffusivity

Dflðl; pÞ ¼
Drðl; pÞ2

2pq0R0ðpþ 1Þ ; (8)

where l covers only distinct radial seed positions. In other

words, if multiple lines are seeded in y per x position, their

FIG. 6. Zonal flow decay for magnetic fluctuations scaled with the magnitude

of U as prescribed in the figure. In the parallel direction, Ak is set to be con-

stant, as only the constant component will contribute to the erosion of the

zonal flow. This simulation uses IC2 and the same parameters as in Fig. 4.
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radial displacement is averaged over before computing

Dflðl; pÞ. One can now plot both DflðpÞ for a single l or aver-

aged over all lines, as illustrated in Fig. 8. This quantity typi-

cally converges after a few ten poloidal turns and shows

little variation after that point, provided a statistically suffi-

cient number of seed lines in x was used.

While the entire above formalism is applied to the Ak
data for a single time step of the simulation, it is now easily

extended in order to provide temporal statistics, yielding a

time-averaged value Dfl;avg.

Results from this routine have been published in Refs. 3

and 29–32, in addition to Ref. 1. The latter required a small

modification, namely, stopping the integration at the out-

board midplane, i.e., after half the z points had been inte-

grated over, and storing the radial position at that point to

compute Dr1=2.

B. Application to field line decorrelation and the NZT

Using the field line diagnostic on turbulence data to

determine Dr1=2 in the context of field line decorrelation

leaves one question to be addressed: Which is the critical

field line to decorrelate? While the correlation length kBxx,

taken at the outboard midplane, is well-defined, the most-

displaced field line will decorrelate much more easily than

the least-displaced one (which, in fact, is unlikely ever to

decorrelate). As the aim here is to identify the critical b
where odd-parity Bx first becomes flux-surface breaking, the

first field line to decorrelate is of essential interest. It is there-

fore important to show that Dr1=2 for this field line is statisti-

cally well-defined.

Possible definitions for Dr1=2 for ensembles of field lines

include: the displacement of the most-displaced field line,

that which is exceeded by exactly 10% of all field lines, and

that which is exceeded by a fraction of e�1 � 0:37 of the en-

tirety of lines. Fig. 9 shows results based on these three defi-

nitions as functions of time for a b value of 0.7%, in addition

to the average displacement. Clearly, all four are in a quasi-

stationary equilibrium, and the ratio of the Dr1=2 for any two

quantities can be expressed by a constant-in-time factor at all

times. It is thus demonstrated that the most-displaced field

line can indeed be employed for comparison with kBxx with-

out causing concern regarding random fluctuations of a sin-

gle traced line. Note that to ensure that this field line is

FIG. 7. Poincar�e section (inboard midplane) for the same simulation data as

in Fig. 9 at t ¼ 328:8. Different colors correspond to different seed positions

of the field lines (all seeded at y ¼ 0), out of a total of 200 lines traced for

100 poloidal turns. The mixing of colors indicates a strongly stochastic field.

FIG. 8. Field line diffusivity as a function of the poloidal turn number; dif-

ferent colors correspond to different field lines. The black-and-white dotted

line marks the average over field lines: after an initial phase where lines

move ballistically, the stochastic (diffusive) regime is reached, and Dfl satu-

rates. See the caption of Fig. 7 for more details.

FIG. 9. Radial displacement Dr1=2 of field lines as a function of time, at the

outboard midplane for CBC parameters at b ¼ 0:7%. From top to bottom,

the curves correspond to the displacement exceeded by the most-displaced

field line (black), the 10% most-displaced field lines (red), the e-fold fraction

(blue), and the average displacement of all lines (pink). For these curves,

1000 lines were traced.
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indeed the most-displaced line in the system, the total num-

ber of lines needs to lie well above Nx for a given (numeri-

cally converged) simulation.

Fig. 10 shows Dr1=2 as a function of b. As kBxx typically

does not vary too drastically with b, and as Dr1=2 / b, one

should always be able to find an intersection of these two

curves, at which point in most cases an NZT should occur.

However, the b value at which the curves intersect may lie

above the KBM threshold, making the NZT threshold un-

observable in both simulations and experimental studies for

these cases.

It may be possible to derive a model which estimates

Dr1=2 � Bx from a quasilinear description of the heat diffu-

sivity via the relation described in Ref. 33 and then compare

that value to an estimate of the radial correlation length of

Bx. This, however, would exceed the scope of the present

work.

While Fig. 10 provides a convincing argument for the

NZT mechanism for CBC parameters, it is important to ver-

ify whether the same holds when looking at different param-

eter regimes. An NZT also occurs for GA-standard case34

parameters—see Refs. 17 and 24 for more details. In Fig. 11

(upper plot), the results of an analysis akin to that of Fig. 10

(and using the same definition for Dr1=2) are shown: again,

the intersection of the radial half-turn displacement with the

correlation length coincides very well with bNZT
crit ¼ 0:3%

< bKBM
crit � 0:7%. Another case, this time based on density-

gradient-driven TEM turbulence where zonal flows play an

important role in regulating the transport levels (see Ref. 21)

is shown in Fig. 11 (lower plot). Here, the KBM limit lies at

bKBM
crit ¼ 2:0%, and nonlinear simulations show no unex-

pected behavior between b ¼ 0% and this threshold. In the

figure, the intersection of the curves lies well above bKBM
crit ,

consistent with the statement that no NZT occurs. Two

points need to be noted, however. First, upon reaching the

KBM regime, both half-turn displacement and correlation

length can change although the former does not exceed the

latter for stably saturated KBM simulations (not shown in

the figure). Second, this second parameter case involves

TEM turbulence, so instead of a transition to extreme heat

flux levels, an NZT would manifest itself merely via strongly

reduced zonal flow activity and suddenly but not excessively

increased transport—neither of these properties is found in

the simulations.

Based on these findings, one can state that both the GA-

standard and the TEM case are consistent with the proposed

mechanisms of the NZT as well as with the quantitative defi-

nition of Dr1=2 based on the most-displaced field line.

Field line decorrelation can be employed to understand

certain other properties of the NZT, as shall be demonstrated

in Sec. IV C.

C. Subdominant microtearing (SMT)-aided
decorrelation

SMT excitation,3 which appears to be ubiquitous in ITG

turbulence, is responsible for the creation of resonant mag-

netic perturbations. These linearly stable modes receive

energy from the linear ITG mode through three-wave inter-

action with the zonal flow. The distinguishing feature of

SMT modes is that they produce even-parity Ak fluctuations,

making them responsible for electron magnetic flutter

FIG. 10. Half-turn field line displacement Dr1=2 (black squares; based on the

definition involving the most-displaced field line) and radial correlation

length kBxx (red diamonds) as functions of b. The corresponding fit lines

intersect at bNZT
crit .

FIG. 11. Field line half-turn displacement and radial correlation length of Bx

(same nomenclature as in Fig. 10) for GA-standard (upper plot) and TEM

case parameters (lower plot). In the first case, the intersection occurs at the

NZT threshold (blue dashed line) as expected, whereas in the second it has

moved well beyond the KBM threshold (purple dash-dotted line), and no

NZT is detected. Both plots use the same definition for Dr1=2 as in Fig. 10.
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transport. One question arising in the context of the NZT is

whether a transition can still occur if the SMT effect is

suppressed.

As Dr1=2 is determined by both even- and odd-parity

contributions to Bx, and as removing SMT modes from the

system will effectively eliminate any even-parity Bx, this

procedure automatically reduces Dr1=2, an effect visible in

Fig. 12. Consequently, the intersection of jDr1=2j and kBxx

(see Fig. 10) will be shifted to higher b, possibly even past

bKBM
crit . Therefore, it is appropriate to refer the process of low-

ering bNZT
crit through SMT activity as SMT catalyzation.

A comment is in order on the parity filtering applied to

the data on which Fig. 12 is based: The unmodified simula-

tion is used, and its Ak data is filtered in post-processing.

While filtering of a linear mode centered on kx ¼ 0 is

straightforward to implement via Akðkx; zÞ ! ðAkðkx; zÞ
�Akð�kx;�zÞÞ=2, the nonlinear box poses a problem. One

can either filter only the kx modes connected with kx ¼ 0

through Eq. (6), filter for every kx separately, or apply it to

groups of connected kx with many symmetry points occur-

ring at off-center kx (in cases where a given kx is not con-

nected to kx ¼ 0). Fig. 12 demonstrates for the first (red

crosses) and second (blue squares) option that the outcome

in terms of Dr1=2 can be drastically different: the first results

in only a very small reduction of the displacement, while the

second causes it to drop to about 2/3 of the original value.

The problem of finding an appropriate filter choice is

even more consequential when filtering the potential at run-

time during a simulation: here, both the linear and nonlinear

dynamics of the turbulence can be affected severely. Various

attempts have yielded some small insights but no conclusive

overall picture to aid in the understanding of the NZT; there-

fore, no results are reported in this publication.

Along the above lines, it may be speculated that apply-

ing external magnetic perturbations to the plasma will influ-

ence the NZT threshold, as well. Unless they change the

linear mode behavior (e.g., through ITG suppression), and

presuming they do not cancel the SMT-induced resonant Bx,

they can be expected to contribute to the picture by enhanc-

ing Dr1=2 and thus lowering bNZT
crit .

The near-marginal NZT cases in Refs. 12 and 21 also

highlight another interesting property: It is possible to create

scenarios where an NZT occurs at some value of b, but then

disappears again due to lack of linear ITG drive when

increasing b, before the ballooning threshold is reached. The

reason lies in the fact that the NZT requires a linear mode

that needs zonal flows to saturate. If, however, finite-b
effects stabilize an ITG mode linearly at bITG

stable, and assuming

one has bNZT
crit < bITG

stable < bKBM
crit , then an island of stability is

created where there is either virtually no turbulent transport

or possibly a different dominant instability (such as TEM)

observed nonlinearly.

Next, a closer look is taken at the energetics near the

NZT threshold.

V. NONLINEAR ENERGY TRANSFER

The modified zonal flow dynamics can be elucidated

and quantified by examining nonlinear energy transfer func-

tions35,36 for b below and above the NZT threshold. To this

end, the free energy is defined as37–39

Ek ¼
X

j

ð
dzdvkdl

Tj0

Fj0
gjk þ qj

Fj0

Tj0
vjk

� ��
gjk; (9)

where j denotes the particle species, qj is particle charge,

Fj0 is the background Maxwellian distribution, vj ¼ �Uj

þ vTh;jvk �Akj is the generalized potential, with the overbar

denoting a gyroaverage and vTh, j being the particle thermal

velocity. Note that the above definition can be rewritten to

give the following expression:

Ek ¼
X

j

pB0nj0Tj0

ð
dz

ð
dvkdl

jfjkj2

2Fj0
þ k2

Dk2
?

2
j/kj2

 

þ
X

j

nj0q2
j

2Tj0
½1� C0ðbjÞ
j/kj2 þ

k2
?
b
jA2
kkj

2

!
; (10)

where kD is the Debye length and C0ðbjÞ relates to the modi-

fied Bessel function I0ðbjÞ of argument bj � k2
? (see, e.g.,

Ref. 16).

The nonlinear contribution to the evolution of the free

energy at wavenumber k is defined by the sum over k0 of the

nonlinear transfer function

N k;k0 ¼
X

j

ð
dzdvkdlðk0xky � kxk0yÞ

�
�

qjv
�
jkvjk0gjk�k0 � qjv

�
jkvjk�k0gjk0

� Tj0

Fj0
g�jkvjk�k0gjk0 þ

Tj0

Fj0
g�jkvjk0gjk�k0

�
: (11)

Here, the modified distribution function of species j at wave-

number k is denoted by gjk0 (see, e.g., Ref. 16). Of particular

interest here is the nonlinear transfer function at k0y ¼ ky and

FIG. 12. Half-turn field line displacements Dr1=2 of the most-displaced lines

as functions of b for the unmodified simulation data (black diamonds); with

even-parity Ak filtered out for kx ¼ 0 and connected kx (red crosses); and

with even-parity Ak filtered out for all kx (blue squares). The reduction (but

not elimination) of the displacement in the two latter cases (especially the

last one) supports the concept of SMT catalyzation (see the text).
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k0y ¼ 0 since these combinations represent three-wave cou-

pling with zonal flows. The standard zonal flow paradigm40

describes the effect of zonal flows as a shearing mechanism

that decreases the radial correlation length of turbulent

eddies. In a nonlinear transfer function, the analogous effect

is manifest as energy transfer from a given k to a k0 with

larger radial wavenumber and the same binormal wavenum-

ber: ðk0x > kx; k
0
y ¼ kyÞ.35,36 Therefore, N k;k0 is examined for

a series of wavenumbers at both b ¼ 0:7% (below the NZT

threshold) and b ¼ 0:9% (above the threshold and during the

runaway phase). The usual zonal flow shearing effect is

clearly identified in the turbulence in the former case,

whereas in the latter, the relative zonal flow coupling is

much weaker and actually constitutes a net energy source for

some wavenumbers. This is shown in Fig. 13, where the

zonal flow component
P

kx0 N ðkx;kyÞ;ðkx0;ky0¼ky;0Þ of a series

(kx ¼ 0 and ky ¼ ½0:05� 0:35
) of nonlinear transfer func-

tions is plotted for the cases above and below bNZT
crit . In the

figure, the nonlinear transfer functions are normalized to the

total non-zonal energy transfer in order to indicate the rela-

tive importance of the zonal-flow-related transfer. As

described above, for b ¼ 0:7%, the values are negative, indi-

cating that zonal flows are facilitating energy transfer to

smaller radial scales. For the case with b ¼ 0:9%, at low ky

the values are still negative but are relatively much weaker.

Then the zonal coupling reverses sign, indicating that during

the NZT, the zonal flows reverse their role and contribute to

the growth after the transient saturation phase.

VI. SUMMARY

A number of studies has been presented in this work, all

of which aim to corroborate the picture of the NZT described

in Sec. I and in Ref. 1. To this end, extensive numerical con-

vergence checks and tests with different numerical schemes

had been performed, where the NZT threshold was shown to

be a numerically very stable phenomenon, underscoring its

physical nature.

NZT physics were then investigated thoroughly. An ana-

lytical theory—adding radial magnetic perturbations to the

standard approach for zonal flow studies22,23 was success-

fully tested by means of simulations, demonstrating that a

flux-surface-breaking Bx is able to destroy zonal flows

through a decay process quadratic in time when Bx is held

fixed. The influence of both even-parity and odd-parity mag-

netic fluctuations was studied by means of field line integra-

tion, and it was shown that the most-displaced field lines

start to decorrelate from the magnetic field at b � bNZT
crit .

Furthermore, the SMT-induced resonant Bx components

were found to catalyze the NZT effect and reduce the thresh-

old. An analysis of the nonlinear energy transfer associated

with zonal flows yields results consistent with these findings:

below bNZT
crit , zonal flows help saturate the ITG mode whereas

this is no longer the case above the threshold, with even net

fueling of the overall growth being observed for some ky.

In conclusion, it was shown in this work that the non-

zonal transition is a physical phenomenon showcasing many

interesting effects. Further study along these lines would

include, in particular, addressing the question whether fusion

experiments may be limited operationally by bNZT
crit .
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